The frequency that counts in language acquisition: types or tokens?

Marina Vigário, Sónia Frota & Fernando Martins
Laboratório de Fonética – CLUL
Universidade de Lisboa

Workshop on Frequency in Phonology
26th October, 2010
Faculdade de Letras da Universidade de Lisboa
Introduction

- **Frequency in the input**
 - Recent research has shown that the frequency of units/patterns in the input plays an important role in language acquisition.

 - In the acquisition of phonology, a number of studies point to a correlation between frequency of patterns/units in the input and the order or emergence and/or the frequency of those units/patterns in children’s productions (Ingram 1988, Roark & Demuth 2000, Demuth & Johnson 2003, Levelt & Van de Vijver 2004, the papers in Demuth 2006, a.o.)
Introduction

What frequency?

• Computing the frequency in the input: over the lexicon (list of unique words – \textit{types}) or over the occurrence of every instance of words (\textit{tokens}). To our knowledge, this issue has not been previously addressed in a systematic way in the literature on language acquisition and development.

• Studies vary: data from dictionaries/lexica (\textit{types}, e.g., Monin, Loevenbruck & Beckman 2007), or based on corpora (\textit{tokens}, e.g., Prieto 2006); very few compare types and tokens (Marchman & Plunkett 1989).
Introduction

Types and tokens crosslinguistically

- Type and token frequency values in a single language may not converge, and not all units/patterns vary in the same way (e.g., Leung & Law 2004, Cantonês de Hong Kong; Ota 2006, Japonês).

- In EP, the frequency data is very scarce in the literature (cf. Viana et al. 1996). The case of subminimal words:
 - 0.4% (Vigário 2003, type)
 - 7% (Vigário, Frota & Martins 2006, token)

In children’s productions, these words appear very early and remain frequent after the initial stage (like in French but not English – diffs. attributed to diff. frequency in the input: Demuth & Johnson 2003, Vigário, Freitas & Frota 2006) > token frequency
Introduction

- Goals
 - Contribute to the understanding of the role of type and token frequency in the acquisition of several aspects of phonology
 - Debate on the role of frequency and on the theories of acquisition base on UG vs statistical computation
 - Contribute to the knowledge on the frequency of various phonological units/patterns in types and tokens in EP

- Structure
 1. Method
 2. Results
 - Word shapes
 - Stress patterns
 - Syllable shapes
 - Position within the word & stress
 - Segments
 - Position within the syllable
 - Point of articulation
 - Position within the word & stress
 3. Discussion and conclusions

Workshop on Frequency in Phonology, October 26
Methodod

♦ Input

Corpora (part of FrePOP)
ca. 245,000 words
- spontaneous speech (portions of several corpora: Português Falado anos 90, CLUL; CRPC, CLUL; CORP-ORAL, ILTEC; C-ORAL-ROM, CLUL)

Tokens: 240,767 Types: 16,702
PWs: 173,355 Clitics: 72,525
Syl: 447,331 Seg: 933,411

FreP (Martins, Vigário & Frota 2009, v.2)
Frequency values in tokens and types; units/patterns from the word-level to features

♦ Child speech data

Available in the literature:

. Word shapes
 (Vigário et al. 2006)

. Stress pattern
 (Frota & Vigário 2008, Correia 2008)

. Syllable shapes
 (Frota et al. 2005, Freitas et al. 2006)

. Segments in the syllable
 (Freitas 1997, Jordão 2009)

. Point of articulation
 (Costa et al. 2007)
Results: word shapes

Token results similar to those reported for the input in Vigário et al. (2006), now computed on a corpus 10x larger.
Results: stress patterns

CS: initial difficulty in producing the stress pattern of the target (Correia 2008, Frota & Vigário 2008); stress matching the target: earlier in words with final stress than with penultimate stress (Frota & Vigário 2008)

Only token frequency may explain CS data.
Results: stress patterns

Crucial role of 1σ PWs > pattern like PW final (Frota et al. 2006): complexity of syllable types in monosyllabic PW ~ PW final; proclitics + PWmono yield final stress: final stress > 22% (Vigário et al. 2010)

Only token frequency may explain CS data
Results: syllable shapes

Token: CV > V > CVN > CVGN > CCV

Type: CV > CVC > CVN > V > CCV > CVGN

CS: CV, V > (C)VN > (C)VG > (C)VC

Token closer to CS but CV, V and CVN/G before CVC?

Frota et al. (2005) and Freitas et al. (2006) explain the emergence of V and CVN/G by the interaction of frequency (only in tokens) and prominent positions.

Stress factor promotes (C)VG and (C)VN if tokens are considered.
Results: syllable shapes

PW edges as prominent positions (Vigário 2003):
90% of V occur in initial position (including proclitics) > tokens
50%-60% of CVG(N/C) syllables occur in stressed monosyllables > tokens
[against only 20% of CVC in both cases]

Tokens frequency in prosodically strong positions predicts the emergence pattern in CS (this confirms and extends previous results)
Results: segments

Token and type frequency show the same distribution

CS: plosives > fricatives, liquids (non-branching onsets – Freitas 1997)

This is the order of emergence predicted by frequency (token and type)

CS: /ʃ, l, r/ in onset: S > l, r (Jordão 2009)

in coda: S > l > r (Freitas 1997)

S > l, r (Jordão 2009)

Not predicted by frequency!
Results: distribution of segments in the syllable

Distribution of /ʃ, l, r/ in the syllable: token and type show the same pattern

Frequency data do not correlate with order of emergence in onset (l>r>S vs. S>l,r); prediction based on frequency for order of emergence in coda S>r>l or S>l,r, partially borne out (S>l>r or S>l,r).

The case of /ʃ/: the 2nd most frequent C in the language occurs in coda >90%; but emerges first in onset (Freitas 1997, Jordão 2009).

The case of /r/: the most frequent C in the language occurs ~evenly in the 3 positions; but order of emergence: onset>coda>branching onset (Freitas 1997, Jordão 2009).

Workshop on Frequency in Phonology, October 26
Results: distribution of segments in the syllable

Distribution of /ʃ, l, r/ in the syllable: token and type show the same pattern

Non-branching Onset: l>r>S vs. S>l, r
Coda: S>r>l ou S>l,r vs. S>l,r>

The case of /ʃ/: >90% coda vs. onset
The case of /r/: 3 positions vs. onset

Interaction between structure and frequency, to be explored

Workshop on Frequency in Phonology, October 26
Results: point of articulation

- **CS**
 - Stage where initial position becomes autonomous: Labial and Dorsal (vs. *Dorsal in Dutch, attributed to the distribution in the input*)
 - Frequency in production:
 - Initial position: L>C>D
 - Medial and final: C>L>D or C>L,D
 - Frequency in targets:
 - Initial position: L>C,D
 - Medial position: C>L>D or C>L,D
 - Final position: C>L>D
 - (Costa et al. 2007)

Token and type show the same distribution:

C > L > D (L and D very close)
Results: point of articulation

Different distribution of L and D vs. C according to position; differences between tokens and types.

L and D occur mostly in initial position in tokens (vs. C):
L > D > C
D dominates in monosyllables

Different distribution of L and D vs. C according to stress+position; Large differences token / type.

L and D stand out in initial stressed position (token)

L and D occur in prominent positions:
PW[−] and PW[+stress]

Workshop on Frequency in Phonology, October 26
Results: point of articulation

L and D stand out in initial position in token frequency (occurring mostly in this position vs. C):
L > D > C
D dominates in monosyllables

Distribution in the input (token only) predicts the autonomization of L and D in initial position, L being more frequent than D (this confirms and extends the results of the input in Costa et al. 2007)
Discussion and conclusions

Frequency: types or tokens?

Frequency in the input is a good predictor of CS data for

- word shapes (emergence and frequency in production)
- stress pattern (emergence and evolution)
- syllable formats (emergence)
- major classes of segments (emergence)
- segments in coda (emergence)
- the acquisition of PoA

Whenever types and tokens do not converge, tokens are the predictors:

- word shapes
- stress
- syllable formats
- point of articulation

Type and token frequency coincide in the classes of segments and segments in coda

Token frequency is the one relevant in acquisition
Discussion and conclusions

- Frequency and structure
 - For various aspects of phonology, the frequency data that are relevant are those computed over tokens and taking the structure of the language into consideration, i.e., prosodically prominent positions: syllable formats and PoA.
 - Proeminent positions stand out in perception and favour the retrieval of the elements that occur there frequently.

- Language specificities
 - The role of token frequency highlights the importance of the distribution of the units and patterns that are indeed present in input, which may vary crosslinguistically.
 - It highlights the relevance of the use of the language, and of studying the possible different inputs within a single language to which different children may be exposed (different paths in acquisition?)
 - Methodological implications
Discussion and conclusions

Other implications

The relevance of token frequency points in the direction of recent proposals on the representation of phonological knowledge (exemplar-based models) and the process of language acquisition (usage-based account of language learning) (e.g., Pierrehumbert 2001, Bybee 2003, Bybee & McNeill 2005), in its moderate version: interaction with structure

To be explored

- Other interactions between frequency and structure (e.g., syllable structure and the emergence of segments)
- Systematic analysis of type and token frequency for units and patterns of EP phonology in different corpora (FrePOP: 3.500.000 words + FreP functionalities)
- Predictions of patterns in the acquisition of the language
Acknowledgments

- Research assistants of FreP project: Marisa Cruz e Nuno Matos

- Mary Beckman, who has first questioned us on which frequency data, token or type, may be relevant for the computation of word size distributions

- freq. monomoraic PW~Minimal Word Constraint

- All those who have made corpora available for the frequency analysis, with special reference to Fernanda Bacelar e Tiago Freitas