Do Olhar ao Cérebro: marcadores precoces no desenvolvimento da linguagem

Eyes and Brain: Early markers of Language development

http://www3.fl.ul.pt/LaboratorioFonetica/babylab/EBELa/
Universidade de Lisboa
Lisbon BabyLab - FLUL/CLUL
LaPSo-ISCTE, FPCE-UP, HSM-CHLN

Do Olhar ao Cérebro: marcadores precoces no desenvolvimento da linguagem

Eyes and Brain: Early markers of Language development

http://ww3.fl.ul.pt/LaboratorioFonetica/babylab/EBELa/

Ethics Statement: Ethical approval obtained from Comissão de Ética do Hospital de Santa Maria and from Comissão de Ética da Administração Regional de Saúde de Lisboa e Vale do Tejo; Written informed consent obtained from parents or legal guardians of all participants according to the principles explained in the Declaration of Helsinki.
Goals

Research on early markers of language development using both standard behavioral measures and ERP measures.

Infant’s task in learning a language >> a stronger commitment to the native language as development proceeds.

Markers of early acquisition:
- Domain: general/language specific?
- Predictors of later abilities

What the early markers for European Portuguese are:
- How they correlate and at which timepoint with later language skills.

Normal development (faster, later):
- Language impairment

Predictors of later abilities

References: [1, 2, 3]
Goals: Prospective study in 4 domains

- Stress discrimination
- Phonetic discrimination
- Pitch discrimination
- Phonetic discrimination
- Word learning

CSBS_DP Infant Toddler Checklist (adapted to EP, norming study planned) [4]

Portuguese Communicative Development Inventory (CDI) – Short forms (8-18; 16-30) [5]

WHY looking for early markers in these 4 domains?
Goals: Prospective study in 4 domains

- Stress discrimination
- Phonetic discrimination
- Pitch discrimination
- Phonetic discrimination

Word learning

CSBS_DP Infant Toddler Checklist (adapted to EP, norming study planned) [4]

Portuguese Communicative Development Inventory (CDI) – Short forms (8-18; 16-30) [5]

Griffiths scales

Why using Eye-tracking and ERPs?
Goals: Prospective study in 4 domains

5/6  6/7  8/9  12  (18)  19/20  (24)  (30)

Stress discrimination  Phonetic discrimination  Pitch discrimination  Phonetic discrimination  Word learning

CSBS_DP Infant Toddler Checklist (adapted to EP, norming study planned) [4]

“Because it is non-invasive and does not require advanced motor responses or language, eye tracking is particularly important for the study of young children and infants.” “…eye tracking can reveal important features of the complex picture of autism.” [6]

Portuguese Communicative Development Inventory (CDI) – Short forms (8-18; 16-30) [5]
Goals: Prospective study in 4 domains

- Stress discrimination
- Phonetic discrimination
- Pitch discrimination
- Phonetic discrimination
- Word learning

CSBS_DP Infant Toddler Checklist (adapted to EP, norming study planned) [4]

Griffiths scales

Portuguese Communicative Development Inventory (CDI) – Short forms (8-18; 16-30) [5]

“Noninvasive safe brain technologies have now been proven feasible for use with children starting at birth.” “...linguistic development from infants’ earliest responses... is reflected in infants’ language abilities in the second and third year of life” [1]
Goals: Prospective study in 4 domains

- Eyes ET
- Brain ERP

Word stress as a strong cue for knowing where the words are in continuous speech, in some languages (e.g., English, German) > speech segmentation task

Performance predicts language later language skills (e.g., expressive vocabulary)

Performance as a marker of risk for later language impairment (SLI)

[7], [8]
Goals: Prospective study in 4 domains

- Eyes ET
- Brain ERP

Stress discrimination

Word stress as a strong cue for knowing where the words are in the continuous speech, in some languages (e.g., English, German) > speech segmentation task

Performance predicts language later language skills (e.g., expressive vocabulary)

Performance as a marker of risk for later language impairment (SLI)

[7], [8]

Altered looking patterns across facial parts [6], [16]
Goals: Prospective study in 4 domains

Phonetic discrimination develops from a general to a language-specific stage

The latter is crucial to segment words, and proceed with learning, and thus predicts later language skills

[1], [2], [9]

Native sounds > words > phrases >...
Goals: Prospective study in 4 domains

Phonetic discrimination develops from a general to a language-specific stage [1], [2], [9]. The latter is crucial to segment words, and proceed with learning, and thus predicts later language skills [1], [2], [9].

The latter is crucial to segment words, and proceed with learning, and thus predicts later language skills [1], [2], [9].
Goals: Prospective study in 4 domains

Intonation Phrase boundaries are crucial for both lexical and syntactic segmentation

[10], [11]

Given infants’ early sensitivity to pitch, this field suggests promising results as predictive markers

Às meninas] deram bonecas]
As meninas deram bonecas]

Word segmentation next to boundaries + phrasing
Goals: Prospective study in 4 domains

The words the infant learns guide him/her in later language development (of the lexicon, phonology and syntax)

The beginnings of sound-meaning associations correlate with other markers of development and signal risk for impairment

Eyes ET + Brain ERP

5/6 6/7 8/9 12 (18) 19/20

Word learning

[1], [12], [13]

How native sound combinations impact on infants’ word learning

satu > Rafu >>*nhagu // sopa
Eyes and Brain: Participants

Participants

- 2 groups: typically developing (TD) and at risk group (ARG)
- Criteria for inclusion/exclusion: ARG ([14], [15])
  Genetic risk (one first degree family member with ASD or SLI)
  Other risk factors: sex (male), low birth weight (< 2500g), low 5’ APGAR score, premature birth (<37)
  Screening tool (CSBS-DP)

- N for each task 30 infants (30 x 4 x 2 x 2 = 480)
- Adult group (ERP tasks – no adult data)
Eyes and Brain: Participants

- Participants
  - 2 groups: typically developing (TD) and at risk group (ARG)

Network of public and private institutions collaborating with EBELa

- Hospitals
- Health centers
- Nursery schools
- APPDA, other private associations
- ....
Eyes and Brain: Expected trends at a glance

Research on early markers of language development: prospective study

4 domains
- Phonetic discrimination NN (6-12mos)
- Stress discrimination (5-6mos)
- Pitch processing (8-9mos)
- Word learning (19-20mos)

Eye-tracking
- Anticipatory looking -
- Visual fixation +

ERPs
- MMN, N250-550, P150-250 +
- CPS +
- N400 +

EP-CDI – measure of later language outcomes

12, 18, 24, 30

NO RISK FOR ASD/SLI (TD) + vs. HIGH RISK GROUP (ARG)
Eyes and Brain: Predictions & Outcomes

Research on early markers of language development: prospective study

1. Overall poor language abilities in ARG when compared to TD
2. Early markers as predictors of later language abilities: The eye movement and neural responses as the potential early markers/predictors; The CDI scores and the final Griffiths score as the language development measures to be predicted
3. Good discrimination of nonnative contrasts will correlate negatively with later language abilities.
4. Good discrimination of native contrasts will show a positive correlation
5. Cases with formal diagnosis on independent grounds would provide a robust estimate of how effective the previously identified early markers of risk can be as an early diagnostic tool
6. Proposal of a set of early markers of risk as decisive step in the promotion of more effective methods of assessment, prevention and intervention with strong individual, familial and social benefits
### Instruções

Para palavras que a criança compreende, assina a primeira coluna (Compreende). Para palavras que a criança não compreende, assina a segunda coluna (Não compreende). Se a criança usa uma forma diferente de dizer a palavra, assina-se na mesma (ex.: 'nana' para banana). No caso de palavras que podem ter uma forma masculina e feminina, ou singular e plural (ex.: bom, bonito, bonitas, bonitos), responda considerando qualquer uma das formas. Inclua ainda as formas com -inho/a (ex.: mote, mote, motes, motas). Considere também as várias formas do mesmo verbo (ex.: dar, dê, dão).

<table>
<thead>
<tr>
<th>Compreende</th>
<th>Compreende a diz.</th>
<th>Compreende</th>
<th>Compreende a diz.</th>
<th>Compreende</th>
<th>Compreende a diz.</th>
</tr>
</thead>
<tbody>
<tr>
<td>aí</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>ca/cape</td>
<td></td>
</tr>
<tr>
<td>de</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perna</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>toma</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>dê/dar</td>
<td></td>
</tr>
<tr>
<td>pão</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>espera/esperar</td>
<td></td>
</tr>
<tr>
<td>buda</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>leão</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>falar/falar</td>
<td></td>
</tr>
<tr>
<td>pão</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rato</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td>deitar/deitar</td>
<td></td>
</tr>
<tr>
<td>carro</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>terço</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bebe</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>boca</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bojo</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pena</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>copa</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>banan</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>céu</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oço</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>chapéu</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fralda</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>marraq</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>zapatos</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cabelo</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>dente</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>olho(s)</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pé(s)</td>
<td>o</td>
<td>o</td>
<td>o</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A sua criança começou a combinar palavras, como por exemplo, 'bole amarelo' (vermelho) ou 'meu pai'? Não o As vezes o Multas vezes o
Lisbon BabyLab: Membros da equipa

Marina Vigário (Investigadora responsável)
Sónia Frota (Co-coord. - tarefas 2,4,5)
Cátia Severino
Cláudia Bandeira de Lima
Ertuğrul Uysal
Joseph Butler
Marisa Cruz
Nuno Matos
Simão Cortês
Susana Correia
Shuang Lu

Lisbon BabyLab, CLUL

FPCE, Univ. Porto

Selene Vicente (Co-coord. - tarefas 1,4)
Marisa Filipe

ISCTE/CIS, IUL

Rita Jerónimo (Co-coord. - tarefa 3)

Outros colaboradores

Huguette Guerreiro
Isabel Barahona da Fonseca

Consultores

Angela D. Friederici - Max Planck Institute for Human Cognitive and Brain Sciences
Kai Alter - Newcastle University (The Institute of Neuroscience)
Francisco Lacerda - Stockholm University (Department of Linguistics)
Obrigada

EBELa: EXCL/MHC-LIN/0688/2012
http://www.fl.ul.pt/laboratoriofonetica/babylab/EBELa/
http://www.fl.ul.pt/laboratoriofonetica/babylab/
labfon@letras.ulisboa.pt


