Early prosodic words in European Portuguese

* Sónia Frota
* Maria João Freitas
^ Marina Vigário

* Universidade de Lisboa, ^ Universidade do Minho
1. Introduction

- We examine the acquisition of PWs in European Portuguese (EP), through analysis of grammatical and statistical properties of the target language & child speech
 1. The relevance of the grammar of the target system (i.e. the phonological system) to the development of PWs
 2. The impact of word shape frequency in the input on the emergence of early polysyllabic words and subminimal words in child speech
 3. The effect of language-specific traits on the timing and course of PW development
2. Input Grammar: The PW in EP

- Cross-linguistic differences in PW structure:
 - Ls showing a constellation of phenomena cuing the PW: Dutch, German, English (e.g. Booij 1995, 1999; Wiese 1996, Hall 1999; Raffelsiefen 1999)
 - Ls with weaker evidence for the PW: Italian, Spanish, Brazilian Portuguese, French (e.g. Kleinhenz 1997, Peperkamp 1997, Bisol 2000, Hannahs 1995a, 1995b)

- **EP phonology** offers a rich array of evidence for the PW (though resyllabification is Romance-like: Vigário 2003)
- Given the solid cues to the PW, EP children may be aware of them > child speech
- If so, it’s reasonable to assume that **grammar** may play a role > facilitate early segmentation & production of the PW shapes found in the language (e.g. Cutler 1996, Peters & Strömqvist 1996, Demuth 1996)
2. Input Grammar: (other) relevant information

- Vowel system
 - Stressed system: i, e, ɛ, a, ɔ, o, u
 - Unstressed system: i, ɪ, ə, u
 - No quantity contrasts

- Syllable structure: CV-dominant + V and CVC

- Word stress
 - 3 syllable window, right edge; penult stress is dominant
 - No sensitivity to quantity: [tuˈnɛl]/[tuˈnɛl] ‘large cask/tunnel’
 - [tuˈfɛw]/[ˈɔrфɛw] ‘tornado/orphan’

- PWs (lexicon & most frequent words): 1 to >3 syllables, monosyllabic with open syllables included
2.1. Input Grammar: *Evidence for PW edges*

- **Left-edge**
 - Phonotactic constraints
 - *[ŷ/ŋ/ɾ/ɪ…]*
 - *[i]*rguer vs. *[p]*rder ‘raise’/‘loose’
 - Non-central vowels do not undergo full vowel reduction
 - *[e]*rguEr vs. *[r]*dOr ‘raise’/’rodent’
 - Emphatic stress (optional)
 - high F0 level

- **Right-edge**
 - Stressless vowels in *σ*s closed by sonorants are lowered
 - lÍd[ɛ]r, Âmb[a]r vs. pOde, acAb[v]
 - ‘leader’ ‘amber’ ‘can’ ‘finish’
 - Stressless Vs ending *ω*s within morphological compounds are lowered:
 - mOn[ə]-acentuAl vs. mon[u]grafIa
 - ‘mono-accentual’ ‘monograph’
 - Non-high palatal Vs are deleted
 - pass[ɾ] vs. pass[ɛ]mos, pass[j]ar
 - ‘pass’ ‘pass-SUBJ-2pp’ ‘take a walk’
2.1. Input Grammar: Evidence for PW

- PW-bound phenomena
 - Two processes of PW-deletion
 - Clipping
 \[(tele)_{\omega} (móvel)_{\omega} > móvel \text{ ‘mobile’ vs.} \ (telefonia)_{\omega} > *fonia \text{ ‘radio’}\]
 - Deletion under identity
 \[(mono)_{\omega} (gamia)_{\omega} ou (poli)_{\omega} (gamia)_{\omega} > mono ou poligamia \text{ ‘mono/polygamy’ vs.} \ (biografia)_{\omega} e (discografia)_{\omega} > *bio e discografia \ ‘biography and discography’ \]
 (Vigário 2003)

- Prominence-related phenomena
 - Word stress
 - Perceptually salient
 - Many segmental rules referring to the presence/absence of stress
 e.g. Vowel reduction: \[d\acute{A} ['da] / *['\text{d}v]\]
 \[d\acute{E} ['de] / *['\text{d}i]\]
 - Morphophonological processes show the asymmetry between stressed/unstressed: e.g. plurals \[f\text{u'}ni\text{t}] \[f\text{u'}ni\text{j}] \ ‘funnel / funnels’ \[\text{fasi}\text{l}] \[\text{fas}e\text{j}] \ ‘easy / easy-PL’
 - Pitch accent association only refers to prosodic word stress
2.1. Input Grammar: *other properties & PW*

- **Cliticization**
 - 30% of phonological clitics in AS (VMF 2005)
 - Most are proclitic (Vigário 2003); 97% of produced clitics
 - Proclitics are adjoined to the level of the PW > addition of one unstressed \(\sigma \)
 - Enlargement of PW shapes [\(\text{\oe }.\text{tr\ae}.\text{ba}.\text{\\ae }.\text{\\ddot o}.\text{ra}\)]
 ‘the workers (fem)’

- **Resyllabification**
 - Not PW-bound, spans the Intonational Phrase (Frota 2000)
 - May yield a restructuring of PW (Vigário 2003) e.g. *músico* [\(\text{'mu.si.\text{kwe}.\text{fri}.\text{kɐ.nu}]/\)])
 - ‘African musician’
 - Still, the clustering of numerous phenomena signalling the PW in EP > closer to Germanic Ls
2.1. Input Grammar: *Predictions*

- The relevance of the **grammar of the target system** (i.e. the phonological system) to the development of PWs
 - **EP phonology** offers a **rich array of evidence** for the PW (though resyllabification is Romance-like: Vigário 2003)
 - Strong evidence in the input may have consequences for acquisition, as children may be aware of (at least) some of these cues
 - It is excepted that **early child speech** exhibits word-based phonology, matching the target system
2.2. Evidence for the PW in the acquisition data

PW-edges are treated differently from word-internal positions

- Word-final Coda fricatives mastered before word-internal ones (e.g. Inês) (Freitas 1997; Freitas, Miguel & Faria 2001)

\[
\begin{align*}
\text{festa} & \quad /\text{feʃt}a/ & \quad [\text{tɛt}a] & \quad (1;9.19) \quad \text{‘party’} \\
\text{estas} & \quad /\text{ɛʃt}a/ & \quad [\text{ɛt}a] & \quad (1;10.29) \quad \text{‘these’} \\
\text{versus} \\
\text{bolos} & \quad /\text{bolo}s/ & \quad [\text{bolo}s] & \quad (1;9.19) \quad \text{‘cakes’} \\
\text{bonecas} & \quad /\text{bu}'nɛka}s/ & \quad [\text{mi}'nɛka}s] & \quad (1;9.19) \quad \text{‘dolls’}
\end{align*}
\]
2.2. Evidence for the PW in the acquisition data

• Sequences of consonants to be syllabified in different syllables appear word-initially: sC clusters (Marta) (Fikkert & Freitas 1999; Freitas & Rodrigues 2004)

 \[\text{estrela} \quad /\text{es}^{.1}\text{tre}l\text{\textipa{a}}/ \quad [\text{es}^{.1}\text{tre}l\text{\textipa{a}}] \quad (2;1.19) \quad \text{‘star’}\]
 \[\text{esticar} \quad /\text{es}^{.1}\text{ti}^{.1}\text{kar}/ \quad [\text{es}^{.1}\text{ti}^{.1}\text{kar}] \quad (2;2.17) \quad \text{‘to stretch’}\]

• POA assignment – word-left periphery first (Inês 1;8.2 – 1;9.19) (Costa & Freitas 2003; Costa 2004)

 \[\text{cupo} \quad /\text{e}^{.1}\text{k}\text{\textipa{o}p}/ \quad [\text{e}^{.1}\text{p}\text{\textipa{\textipa{u}}}] \quad \text{‘glass’}\]
 \[\text{tampa} \quad /\text{e}^{.1}\text{t}^{.1}\text{\textipa{p}\text{\textipa{a}}}/ \quad [\text{e}^{.1}\text{p}\text{\textipa{\textipa{t}}}\text{\textipa{v}}] \quad \text{‘cover’}\]
 \[\text{folha} \quad /\text{e}^{.1}\text{fo}^{.1}\text{\textipa{\textipa{a}}}\text{\textipa{\textipa{a}}}/ \quad [\text{e}^{.1}\text{ku}^{.1}\text{\textipa{\textipa{a}}}\text{\textipa{\textipa{a}}}] \quad \text{‘leaf’}\]
2.2. Evidence for the PW in the acquisition data

- Unstressed word-initial vowels do not reduce as word-internal ones, matching the target system:

 *orelhas /oɾɨʃ/ [ɔliˈlɛɾnʃ] (Inês: 1;10.29) ‘ears’
 */u/

 *elefante /eˈliʃtɨ/ [iɾʃtɨ] (Luís: 2;0;27) ‘elephant’
 */i/
3. A Frequency Study of Prosodic Word shape

- Language-specific frequency distributions of PW shapes in the input may constrain PW development.
- Initial state with monomoraic ws > Early words are minimally and maximally a binary foot (e.g. Demuth & Johnson 2003).
- But variation depending on the statistical properties of the input language: emergence and development of subminimal PWs and/or PWs with more than a binary foot (e.g. Demuth & Johnson 2003, Lléo 2004, Prieto 2004).
- Analysis of PW shape frequencies in adult speech, child-directed speech and in children’s early productions.
3. Data

- **CS**: spontaneous data from 3 monolingual Portuguese children – 4,073 tokens (prosodic word forms):
 - João aged 0;10.2 to 2;0.19
 - Inês aged 0;11.14 to 1;10.29
 - Marta aged 1;2.0 to 2;0.26

- **AS**: spontaneous adult speech (*Português falado 90s*)
 23,459 phonological tokens (PWs & clitics)

- **CDS**: spontaneous adult speech
 3 first sessions of Inês (0;11.14 – 1;1.30)
 3 first sessions of Marta (1;2 – 1;4.8)
 Total of 23,207 phonological tokens (PWs & clitics)
3.1. PW shape frequencies in the input

• Child ambient language includes both CDS and AS (the 2 sorts of input have not been previously compared)
• The impact of CDS in child speech is not always clear (e.g. Ratner 1996, van de Weijer 2002)
• Some studies have concluded that CS is closer to AS (Frota & Vigário 1995)

• Breakdown of phonological tokens into PWs and clitics
 – CDS: 74.4% 25.6%
 – AS: 70.4% 29.6%
• Frequency patterns of PW shapes:
 – Monosyllabic, disyllabic
 – Trisyllabic, >3 syllables
 – Within monosyllabic: CV-shape (all PWs ending with oral V)
3.1. PW shape frequencies in the input

- **Similarities**
 - Frequency of disyllabic PWs
 - Frequency of monosyllabic non-CV PWs

- **Differences**
 - CDS: monosyllabic CV shapes prevail over trisyllabic and 3+
 - AS: balanced distribution monosyllabic and PWs larger than binary foot (28.6% and 27%), monosyllabic CV and long PWs (7.4% and 8%)

- **Different frequency-based predictions**
3.1. PW shape frequencies in the input

- **CDS**: child speech will show a high incidence of subminimal PWs, while complying with maximality constraints (i.e. 3+ avoided/truncated in early speech & acquired later).

- **AS**: early child speech will show both the presence of subminimal PWs and larger PWs, thus not complying with constraints on word size.
3.2. The shape of early words

Word shape frequency in Child Speech and in the input compared (tokens)
3.2. The shape of early words

Word shape frequency in Child Speech and in the input compared (tokens)

- Disyllabic shapes predominate, as expected (≈AS/CDS)
- Crucial data: 1, 3, 3+
- CDS: the % 1 is lower 28/43
 the % 3 and 3+ is much higher 25/10
- AS: the % 1 is ≈ 28/29
 the % 3 and 3+ is also ≈ 25/27

Correlation	CS	AS	CDS
CS | _ | ,99* | ,88
AS | ,99* | _ | ,91
CDS | ,88 | ,91 | _

The prediction based on AS frequency patterns was borne out: early CS shows BOTH subminimal and larger words.
3.2. The shape of early words: 1

- **Monosyllabic CV**
 - appear in large numbers
 - are produced frequently even at *later* stages: from 1;08 onwards % 1:CV/1 tokens

 João 58%, Inês 59%, Marta 32%
 - **match** target word shape from the beginning (>90%)
 - No lengthening

 pé /'pɛ/ [ˈpɛ] Inês: 1;0.25 ‘foot’
 pé /'pɛ/ [ˈpɛ] Marta: 1;02.0 ‘foot’
 dá /'dɐ/ [ˈdɐ] João: 1;02.01 ‘give’

- **Monosyllabic non-CV can be produced as CV**

 quer /'kɛɾ/ [ˈkɛɾ] Inês: 0;11.14 ‘(he/she) wants’
 cais /ˈkajʃ/ [ˈkajʃ] Marta: 1;04.08 ‘to fall – 2nd sg’
 mais /ˈmajʃ/ [ˈmɐjʃ] Inês: 1;06.06 ‘more’
 cão /ˈkɐ̃w/ [ˈkɐ̃w] João: 1;06.18 ‘dog’
 cais /ˈkajʃ/ [ˈkajʃ] João: 1;09.11 ‘to fall – 2nd sg’
3.2. The shape of early words: 1

- The course of development of disyllabic targets
 - truncation to 1 even in later stages
 - both iambic and trochaic targets are truncated
 - preservation of the stressed syllable
 (trochaic forms more frequent in the input; the unstressed σ is reduced in both types of targets *prominence cues to PW in EP*)

- Disyllabic iambic
 fugiu /fu̯ʒi⁠w/ [ʃi⁠w] Inês: 1;01.30
 ‘(he/she) ran away’

 balão /be̯lē̯w̠/ [law] Marta:1;03.08
 ‘balloon’

 avô /əvɔ/ [bo] João: 1;11.13
 ‘grandfather’

- Disyllabic trochaic
 água /a̯ɡwe/ [a] Inês: 1;01.30
 ‘water’

 praia /pra̯jɐ/ [pa] João: 2;0.19
 ‘beach’
The shape of early words: disyllabic targets

Frequency of 1 shapes
Reduction of 1:other > 1:CV
Truncation of 2 > 1:CV

Early words are not constrained by minimality requirements
3.2. The shape of early words: >2

- Words larger than disyllabic shapes are not avoided in CS
 - Their overall frequency (25%)
 - The course of development of trisyllabic targets

- Examples
 sapato /sɐˈpa.tu/ [sɐ.ˈpa.θɐ]
 Marta: 1;02.0 ‘shoe’
 banana /bɐˈna.nɐ/ [ɐ.ˈna.nɐ]
 Marta: 1;03.08 ‘banana’
 caneta /kɐˈne.tɐ/ [kɐ.ˈle.le]
 Marta: 1;05.17 ‘pen’
 banana /bɐˈna.nɐ/ [ɐ.ˈma.nɐ]
 Inês: 1;05.11 ‘banana’
 sapato /sɐˈpa.tu/ [pa.ˈta.ta]
 Inês: 1;07.02 ‘shoe’
First 3 targets appear very early: 1;01
3 word shapes emerge early: 1;02 / 1;07
Are mastered soon in the path of development
The shape of early words: trisyllabic targets

Initial stage with truncation to a 2 shape

Two strategies:
Deletion of final σ > iambic shape
Deletion of first σ > trochaic shape
3.2. The shape of early words > 2

- About truncation to disyllabic shapes
 - Preservation of the stressed σ
 - Preservation of the consonant (place features) from the left-edge of PW

 boneca /bu'nẽkɐ/ [me̞'ne̞] 1:05.11
 - doll’

 mamoca /ma'mɔkɐ/ [ma'mɔ] 1:05.11
 - ‘little breast’

 morangos /mu'rẽɡuʃ/ [mẽɡuʃ] 1:05.17
 - ‘strawberrys’

 querido /ki'ridu/ [kidu] 1:05.17
 - ‘dear’

- Prosodic fillers
 - Initial σ added to material that realizes the target PW
 - Regardless of PW category
 - Regardless of PW size

 pato /'patu/ [e.'tɐ]/[i'tɐ] João: 0;11.06
 - ‘duck’

 dá /'da/ [e.'da]/['da] Inês: 1;0.25
 - ‘give (me)’

 mola /'mɔlɐ/ [i.ma'lɐ]/[i'mɔ.lɐ]
 - Marta: 1;05.17 ‘spring’

- Not inserted to obtain a given shape & optional
4. Summary and Discussion

• Summary of findings
 – PW shape frequencies in the input contribute to explain PW acquisition (AS in particular)
 – As predicted by the frequency patterns, 3 targets appear early (1;01/1;02) & are produced early (1;02/1;07); 1:CV remain frequent until later stages
 – The properties of the input grammar concur to promote the same effect

• Discussion
 – In EP, both the grammar and frequency effects promote the early production of the ≠ word shapes
 – Strong evidence for PW in the input grammar may strengthen the frequency effects

 e.g. PW-edges are relatively well-delimited (> other RLs) a tendency is expected to faithfully reproduce edges in CS

Early words in EP are NOT constrained by minimality or maximality requirements
4. Discussion: Grammar and Frequency

- Examples of possible interactions
 - 3 PWs are acquired early
 - But initial stage of truncation
 Two of the strategies
 children display involve
 preservation of the PW left-edge, the most prominent PW-edge in EP grammar
 - 2 PWs may show truncation to 1, even at the later stages.
 Both iambic and trochaic targets are reduced to the stressed syllable, in line with prominence-related cues to the PW (i.e. salience of word stress, unstressed V reduction)
 - Main direction of cliticization in EP (proclisis) increments the frequency of larger words, adding to evidence vs. a maximality constraint

Resyllabification makes evidence for PW less strong then in GLs
4. Discussion: Grammar and Frequency

- English, Spanish, Catalan, EP
 - **Grammar**: Eng > EP > Sp, Cat

 Prediction: Early production of the ≠ word shapes
 But shapes larger than a binary foot Sp, EP > Eng, Cat

 - **Frequency**: Sp (≈30%), EP (27%) > Cat (15%) > Eng (≈5%)

 But Sp, EP > Eng, Cat If frequency alone explains the early appearance in Sp and EP, it does not explain the fact that they seem to emerge equally late in Cat and Eng

- **If a Grammar & Frequency interaction is assumed**: a considerably higher frequency in Cat, but much strong grammar cues in Eng.
Obrigada!

This work is part of the research developed within the SILC project, held by Onset-CEL (Univ. Lisboa), in collaboration with Univ. Minho. It will appear in *Language and Speech* Special Issue on Prosodic Words.

Special thanks: the children and their mothers; Ana Lúcia Santos, Carla Soares; K. Demuth and two *Language and Speech* Reviewers; FLUL for financial support.
2.1. Input Grammar: *Predictions*

- The relevance of the **grammar of the target system** (i.e. the phonological system) to the development of PWs
 - EP children should exhibit *early* development of ω
 - We should expect evidence for ω in EP to emerge earlier than in other Romance languages
 - Depending on the weight and/or frequency of the various grammatical cues in the input
 - EP children may pattern like **Germanic** children (if EP Romance-like *resyllabification* is not that important/salient)
 - Or show an **intermediate** speed of development between Germanic and Romance languages
Lower bounds on early \(\omega \)s: *No minimality*

- Word shape of children’s productions shows
 - High percentage of monosyllabic shapes (monomoraic)
- The high incidence of subminimal words is **NOT** consistent with a word shape *frequency* effect
 - 4% of monosyllabic words in the input;
 - 6% of monomoraic words in adult most frequent words
- Hypothesis: the result of a conflict between patterns with rightmost prominence, given by higher-level prosody (\(\phi, I \)), and patterns with leftmost prominence (word-level stress): \[\text{CV} \begin{array}{c} \text{C'} \text{V} \\ \text{C'} \text{V} \end{array} \text{CV} \] monosyllabic
Summary

- EP children display early development of ω, as shown by the difference between ω-edges and word-internal positions (consistent with the properties of the input grammar). A comparison with Germanic Ls and other Romance Ls would enlighten the issue of the frequency vs. weight of phonological cues.

- No maximality: early production of trisyllabic words (consistent with both a frequency and a grammar effect)

- No minimality: high incidence of subminimal words, against the low frequency in the input (a strategy to deal with a prominence conflict)

- No link between maximality and the early emergence of protomorphemes (an alternative view: the prosodic filler hypothesis)