# Early prosodic words in European Portuguese

\*Sónia Frota

\*Maria João Freitas

†Marina Vigário

\*Universidade de Lisboa, \*Universidade do Minho

#### 1.Introduction

- We examine the acquisition of PWs in European Portuguese (EP), through analysis of grammatical and statistical properties of the target language & child speech
  - The relevance of the grammar of the target system (i.e. the phonological system) to the development of PWs
  - 2. The impact of word shape **frequency** in the input on the emergence of early polysyllabic words and subminimal words in child speech
  - The effect of language-specific traits on the timing and course of PW development

#### 2. Input Grammar: The PW in EP

- > Cross-linguistic differences in PW structure:
  - ✓ Ls showing a constellation of phenomena cuing the PW: Dutch, German, English (e.g. Booij 1995, 1999; Wiese 1996, Hall 1999; Raffelsiefen 1999)
  - ✓ Ls with weaker evidence for the PW: Italian, Spanish, Brazilian Portuguese, French (e.g. Kleinhenz 1997, Peperkamp 1997, Bisol 2000, Hannahs 1995a, 1995b)
- **EP** phonology offers a rich array of evidence for the PW (though resyllabification is Romance-like: Vigário 2003)
- > Given the solid cues to the PW, EP children may be aware of them > child speech
- ➤ If so, it's reasonable to assume that **grammar** may play a role > facilitate **early segmentation & production of the PW shapes** found in the language (e.g. Cutler 1996, Peters & Strömqvist 1996, Demuth 1996)

#### 2. Input Grammar: (other) relevant information

- Vowel system
  - Stressed system: i, e, ε, a, ο, o, u
  - Unstressed system: i, i, v, u
  - No quantity contrasts
- Syllable structure: CV-dominant + V and CVC
- Word stress
  - 3 syllable window, right edge; penult stress is dominant
  - No sensitivity to quantity: [tu'nɛł]/['tunɛł] 'large cask/tunnel' [tu'fɐ̃w̃]/ ['ɔɾfɐ̃w̃] 'tornado/orphan'
- PWs (lexicon & most frequent words): 1 to >3 syllables, monosyllabic with open syllables included
  - ['pε] 'foot'; ['mar] 'sea'; [tre.be.λε.'do.re∫] 'workers (fem)

#### 2.1. Input Grammar: Evidence for PW edges

- Left-edge
  - Phonotactic constraints  $*[\Lambda/\mathfrak{p}/\mathfrak{r}/\mathfrak{i}...]_{\omega}$

[R]ato vs. ca[f]o 'mouse'/'expensive'
\*[i]rguer vs. p[i]rder 'raise'/loose'

- Non-central vowels do not undergo full vowel reduction
  [e]rguEr vs. ro[i]dOr 'raise'/'rodent'
  [o]piniÃo vs. mi[u]lInho
  'opinion'/ 'soft part of bread-DIM'
- Emphatic stress (optional)high F0 level

Right-edge

- Stressless vowels in σs closed by sonorants are lowered
  lÍd[ε]r, Âmb[a]r vs. pOde, acAb[v]
  'leader' 'amber' 'can' 'finish'
- Stressless Vs ending ωs within morphological compounds are lowered:

mOn[o]-acentuAl vs. mon[u]grafIa 'mono-accentual' 'monograph'

Non-high palatal Vs are deleted passe vs. pass[e]mos, pass[j]ar
 'pass' 'pass-SUBJ-2pp' 'take a walk'

#### 2.1. Input Grammar: Evidence for PW

- PW-bound phenomena
  - -Two processes of PW-deletion
  - clipping

 $(\text{tele})_{\omega}(\text{m\'ovel})_{\omega} > \text{m\'ovel `mobile'} \quad VS.$   $(\text{telefonia})_{\omega} > *\text{fonia} \quad \text{`radio'}$ 

deletion under identity

(mono)<sub>ω</sub>(gamia)<sub>ω</sub> ou (poli)<sub>ω</sub>(gamia)<sub>ω</sub> > mono ou poligamia 'mono/polygamy' vs. (biografia)<sub>ω</sub> e (discografia)<sub>ω</sub> > \*bio e discografia 'biography and discography' (Vigário 2003)

- Prominence-related phenomena
  - Word stress
  - perceptually salient
  - many segmental rules referring to the presence/absence of stress
     e.g. vowel reduction: d\(\hat{A}\) ['d\(\frac{a}{a}\)] / \*['d\(\frac{v}{a}\)]
     d\(\hat{E}\) ['d\(\frac{e}{a}\)] / \*['d\(\frac{i}{a}\)];
  - Morphophonological processes show the asymmetry between stressed/unstressed: e.g. plurals [fu'nił] [fu'ni∫] 'funnel / funnels' ['fasił] ['fasɐj∫] 'easy / easy-PL'
  - Pitch accent association only refers to prosodic word stress

#### 2.1. Input Grammar: other properties & PW

- Cliticization
- 30% of phonological clitics in AS (VMF 2005)
- Most are proclitic (Vigário 2003); 97% of produced clitics
- Proclitics are adjoined to the level of the PW > addition of one unstressed  $\sigma$
- Enlargement of PW shapes
  [vs.trv.bv.kv.'do.rv]]

  'the workers (fem)

- Resyllabification
- Not PW-bound, spans the
   Intonational Phrase (Frota 2000)
- May yield a restructuring of PW (Vigário 2003) e.g. músico ['mu.si.kwv.fri.'kv.nu]/ ['mu.si.kv.fri.'kv.nu]
  - 'African musician'
- Still, the clustering of numerous phenomena signalling the PW in EP > closer to Germanic Ls

#### 2.1. Input Grammar: *Predictions*

- > The relevance of the grammar of the target system (i.e. the phonological system) to the development of PWs
  - > EP phonology offers a rich array of evidence for the PW (though resyllabification is Romance-like: Vigário 2003)
  - > Strong evidence in the input may have consequences for acquisition, as children may be aware of (at least) some of these cues
  - > It is excepted that **early child speech** exhibits word-based phonology, matching the target system

#### 2.2. Evidence for the PW in the acquisition data

PW-edges are treated differently from word-internal positions

 Word-final Coda fricatives mastered before wordinternal ones (e.g.Inês) (Freitas 1997; Freitas, Miguel & Faria 2001)

```
      festa
      /ˈfɛʃtv/
      [ˈtɛtv]
      (1;9.19) 'party'

      estas
      /ˈɛʃtvʃ/
      [ˈɛtvʃ]
      (1;10.29) 'these'

      versus
      bolos
      /ˈboluʃ/
      [ˈboloʃ]
      (1;9.19) 'cakes'

      bonecas /buˈnɛkvʃ/
      [mɨˈnɛkvʃ]
      (1;9.19) 'dolls'
```

#### 2.2. Evidence for the PW in the acquisition data

• Sequences of consoants to be syllabified in diff. syllables appear word-initially: sC clusters (Marta) (Fikkert & Freitas 1999; Freitas & Rodrigues 2004)

```
estrela /\int.'trelv/ [\int'tɛlv] (2;1.19) 'star' esticar /\int.ti'kar/ [\int:ti'kaj] (2;2.17) 'to stretch'
```

• POA assignment – word-left periphery first (Inês 1;8.2 – 1;9.19) (Costa & Freitas 2003; Costa 200

$$1;8.2-1;9.19)$$
 (Costa & Freitas 2003; Costa 2004)  $copo$   $/ k pu/$  [  $patu$ ] 'glass'  $tampa$   $/ t pu/$  [  $pitv$ ] 'cover'  $folha$   $/ foke/$  [  $kuke$ ] 'leaf'

#### 2.2. Evidence for the PW in the acquisition data

• Unstressed word-initial vowels do not reduce as word-internal ones, matching the target system:

These facts confirm our expectations: word-based phonology (matching the target system) emerges early in EP.

## 3. A Frequency Study of Prosodic Word shape

- Language-specific frequency distributions of PW shapes in the input may constrain PW development
- Initial state with monomoraic ws > Early words are minimally and maximally a binary foot (e.g. Demuth & Johnson 2003)
- But variation depending on the statistical properties of the input language: emergence and development of subminimal PWs and/or PWs with more than a binary foot (e.g. Demuth & Johnson 2003, Lléo 2004, Prieto 2004)
- Analysis of PW shape frequencies in adult speech, child-directed speech and in children's early productions

#### 3. Data

• CS: spontaneous data from 3 monolingual Portuguese children – 4.073 tokens (prosodic word forms):

```
      João
      aged 0;10.2
      to
      2;0.19

      Inês
      aged 0;11.14
      to
      1;10.29

      Marta
      aged 1;2.0
      to
      2;0.26
```

- AS: spontaneous adult speech (*Português falado 90s*) 23.459 phonological tokens (PWs & clitics)
- CDS: spontaneous adult speech

```
3 first sessions of Inês (0;11.14 – 1;1.30)
```

3 first sessions of Marta (1;2-1;4.8)

Total of 23.207 phonological tokens (PWs & clitics)

## 3.1. PW shape frequencies in the input

- Child ambient language includes both CDS and AS (the 2 sorts of input have not been previously compared)
- The impact of CDS in child speech is not always clear (e.g. Ratner 1996, van de Weijer 2002)
- Some studies have concluded that CS is closer to AS (Frota & Vigário 1995)

 Breakdown of phonological tokens into PWs and clitics

- CDS: 74.4% 25.6%

- AS: 70.4% 29.6%

- Frequency patterns of PW shapes:
  - Monosyllabic, disyllabic
  - Trisyllabic, >3 syllables
  - Within monosyllabic: CVshape (all PWs ending with oral V)

## 3.1. PW shape frequencies in the input



- Similarities
  - Frequency of disyllabic PWs
  - Frequency of monosyllabic non-CV PWs

- Differences
  - CDS: monosyllabic CV
     shapes prevail over
     trisyllabic and 3+
  - AS: balanced distribution monosyllabic and PWs larger than binary foot (28.6% and 27%), monosyllabic CV and long PWs (7.4% and 8%)
- Different frequencybased predictions

## 3.1. PW shape frequencies in the input



- **AS**: early child speech will show **both** the presence of subminimal PWs and larger PWs, thus not complying with constraints on word size

- Different frequencybased predictions
  - CDS: child speech will show a high incidence of subminimal PWs, while complying with maximality constraints (i.e. 3+ avoided/truncated in early speech & acquired later)

## 3.2. The shape of early words

Word shape frequency in Child Speech and in the input compared (tokens)



The prediction based on AS frequency patterns was borne out: early CS shows BOTH subminimal and larger words

#### 3.2. The shape of early words

Word shape frequency in Child Speech and in the input compared (tokens)



Correlation CS AS CDS
CS \_\_\_ ,99\* ,88
AS \_\_\_ ,99\* \_\_ ,91
CDS ,88 ,91 \_\_\_

 Disyllabic shapes predominate, as expected (≈AS/CDS)



- Crucial data: 1, 3, 3+
- CDS: the % 1 is lower 28/43 the % 3 and 3+ is much higher 25/10

AS: the % 1 is 
$$\approx$$
 28/29  
the % 3 and 3+  
is also  $\approx$  25/27

## 3.2. The shape of early words: 1

- Monosyllabic CV
  - appear in large numbers
  - are produced frequently even at later stages: from 1;08 onwards % 1:CV/1 tokens

João 58%, Inês 59%, Marta 32%

- match target word shape from the beginning (>90%)
- No lengthening

```
pé / 'pε/ ['pε] Inês: 1;0.25 'foot'
pé / 'pε/ ['pe] Marta: 1;02.0'foot'
dá / 'da/ ['dɐ] João: 1;02.01'give'
```

 Monosyllabic non-CV can be produced as CV quer / ker/ [ ke] Inês: 0;11.14 '(he/she) wants' cais / kaj [ ka] Marta: 1;04.08 'to fall – 2nd sg' mais / maj [ me] Inês: 1;06.06 'more' cão / k̄v̄w̄/ [ ke] João: 1;06.18 'dog' cais / kaj [ ka] João: 1;09.11 'to fall – 2nd sg'

## 3.2. The shape of early words: 1

- The course of development Disyllabic iambic of disyllabic targets

   Disyllabic iambic fugiu /fu'ziw/ ['fiw] Inês
  - truncation to 1 even in later stages
  - both iambic and trochaic targets are truncated
  - preservation of the stressed syllable

(trochaic forms more frequent in the input; the unstressed σ is reduced in both types of targets *prominence cues to PW in EP*)

```
• Disyllabic iambic

fugiu /fu'ziw/ ['ʃiw] Inês: 1;01.30

'(he/she) ran away'

balão /bɐ'lɐ̃w̃/ ['law] Marta:1;03.08

'balloon'

avô /ɐ'vo/ ['bo] João: 1;11.13

'grandfather'
```

• Disyllabic trochaic

água /agwe/ ['a] Inês: 1;01.30

'water'

praia /'praje/ ['pa] João: 2;0.19

'beach'



## 3.2. The shape of early words: >2

- Words larger than disyllabic shapes are not avoided in CS
  - Their overall frequency (25%)
  - The course of development of trisyllabic targets

```
Examples
sapato /se patu/ [γε. pa.θε]
       Marta: 1;02.0 'shoe'
banana /be'nene/ [me.'ne:.ne]
       Marta: 1;03.08 'banana'
caneta /ke'nete/ [ki.'le.le]
       Marta: 1;05.17 'pen'
banana /be'nene/ [e.'me.ne]
       Inês: 1;05.11 'banana'
sapato /se'patu/ [pa.'ta.te]
       Inês: 1;07.02 'shoe'
```



The shape of early words: trisyllabic targets

Prediction based on input frequency borne out: shapes > binary foot appear early in CS

First 3 targets appear very early: 1;01

3 word shapes emerge early: 1;02 / 1;07

Are mastered soon in the path of development





#### Two strategies:

Deletion of final  $\sigma >$  iambic shape

Deletion of first  $\sigma$  > trochaic shape



Not inserted to obtain a given shape & optional

## 3.2. The shape of early words > 2

About truncation to disyllabic shapes Preservation of the stressed  $\sigma$ Preservation of the consonant (place features) from the left-edge of PW boneca/bu'neke/ [me'ne] 1;05.11 'doll' mamoca /me'mɔke/ [cm'uɔ] 1;05.11 'little breast' morangos /muˈɾɐ̃guʃ/ [ˈmɐ̃guʃ]1;05.17 'strawberrys' querido /kiˈridu/ [ˈkidu] 1;05.17 'dear'

#### Prosodic fillers

- Initial σ added to material that realizes the target PW
- Regardless of PW category
- Regardless of PW size

```
pato /'patu/ [v.'tv]/['tv] João: 0;11.06
'duck'
dá /'da/ [v.'da]/['da] Inês: 1;0.25
'give (me)'
mola /'mɔlv/ [i.mɔ'.lv]/['mɔ.lv]
```

Marta: 1;05.17 'spring'

Early words in EP are NOT constrained by minimality or maximality requirements

## 4. Summary and Discussion

- Summary of findings
  - PW shape frequencies in the input contribute to explain
     PW acquisition (AS in particular)
  - As predicted by the frequency patterns, 3 targets appear early (1;01/1;02) & are produced early (1;02/1;07);
    1:CV remain frequent until later stages
  - The properties of the input grammar concur to promote the same effect

- Discussion
  - In EP, both the grammar and frequency effects promote the early production of the ≠ word shapes
  - Strong evidence for PW in the input grammar may strengthen the frequency effects
  - e.g. PW-edges are relatively well-delimited (> other RLs) a tendency is expected to faithfuly reproduce edges in CS

#### 4. Discussion: Grammar and Frequency

- Examples of possible interactions
  - 3 PWs are acquired early
  - But initial stage of truncation
     Two of the strategies
     children display involve
     preservation of the PW left edge, the most prominent
     PW-edge in EP grammar

Resyllabification makes evidence for PW less strong then in GLs

- 2 PWs may show truncation to

   even at the later stages.
   Both iambic and trochaic targets are reduced to the stressed syllable, in line with prominence-related cues to the PW (i.e. salience of word stress, unstressed V reduction)
- Main direction of cliticization in EP (proclisis) increments the frequency of larger words, adding to evidence vs. a maximality constraint

• Still, little data available!

#### 4. Discussion: Grammar and Frequency

- English, Spanish, Catalan, EP
  - Grammar: Eng > EP > Sp, Cat

Prediction: Early production of the \neq word shapes

But shapes larger than a binary foot Sp, EP > Eng, Cat (Roak & Demuth 2000, Demuth & Johnson 2003, Lléo & Demuth 1999, Lléo 2004, Prieto 2004)

- Frequency: Sp (≈30%), EP (27%) > Cat (15%) > Eng (≈5%)

But Sp, EP > Eng, Cat

If frequency alone explains the early appearance in Sp and EP, it does not explain the fact that they seem to emerge equally late in Cat and Eng

✓ If a Grammar & Frequency interaction is assumed: a considerably higher frequency in Cat, but much strong grammar cues in Eng.

## Obrigada!



This work is part of the research developed within the SILC project, held by Onset-CEL (Univ. Lisboa), in collaboration with Univ. Minho. It will appear in *Language and Speech* Special Issue on Prosodic Words

Special thanks: the children and their mothers; Ana Lúcia Santos, Carla Soares; K. Demuth and two *Language and Speech* Reviewers; FLUL for financial support.

#### 2.1. Input Grammar: *Predictions*

- The relevance of the grammar of the target system (i.e. the phonological system) to the development of PWs
  - > EP children should exhibit early development of ω
  - > We should expect evidence for ω in EP to emerge earlier than in other Romance languages
  - > Depending on the weight and/or frequency of the various grammatical cues in the input
    - > EP children may pattern like Germanic children (if EP Romance-like resyllabification is not that important/salient)
    - > Or show an **intermediate** speed of development between Germanic and Romance languages

#### Lower bounds on early ws: No minimality

- Word shape of children's productions shows
  - High percentage of monosyllabic shapes (monomoraic)
- The high incidence of subminimal words is NOT consistent with a word shape frequency effect
   4% of monosyllabic words in the input;
   6% of monomoraic words in adult most frequent words
- Hypothesis: the result of a conflict between patterns with rightmost prominence, given by higher-level prosody (φ, I), and pattens with leftmost prominence (word-level stress):

monosyllabic

#### Summary

- EP children display **early** development of  $\omega$ , as shown by the difference between  $\omega$ -edges and word-internal positions (consistent with the properties of the input grammar). A comparison with Germanic Ls and other Romance Ls would enligthen the issue of the frequency vs. weight of phonological cues.
- *No maximality*: early production of trisyllabic words (consistent with both a frequency and a grammar effect)
- *No minimality*: high incidence of subminimal words, against the low frequency in the input (a strategy to deal with a prominence conflict)
- No link between maximality and the early emergence of protomorphemes (an alternative view: the prosodic filler hypothesis)